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ABSTRACT 

To tune and validate the performance of an acoustic model, sound signals were 

transmitted from a calibrated source, at varied mid-range frequencies. and received on a 

moored acoustic recording package at the edge of Tanner Bank near the Southern 

California Anti-Submarine Warfare Range (SOAR).  The acoustic monitoring package 

was constructed of three calibrated Acousonde recorders.  Source levels (SL) were 

measured at 1.8 meters from the source using a Bioacoustic Probe.  Signals recorded on 

the Acousondes and the Bioacoustic Probe were processed to measure transmission loss 

(TL) and its variability.  Measurements were compared with estimates of TL calculated 

from the Navy Standard Parabolic Equation (NSPE) acoustic model using a first guess 

geoacoustic bottom based on the literature.  Other model inputs included bathymetry 

from the U.S. Coastal Relief Model, and sound speed profiles from Expendable 

Bathythermographs (XBT) and the Navy Coastal Ocean Model.  Using data garnered 

from previous studies of the bottom sediment and sub-layer near the Southern California 

Offshore Range, variations of a geoacoustic model were constructed and input into the 

NSPE model.  TL from all model runs were then analyzed across all frequencies to 

determine the best fit geoacoustic model to use with NSPE when applying it near SCORE 

for acoustic predictions.  Research was funded by the United States Navy Chief of Naval 

Operations Environmental Readiness Division (CNO/N45). 
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I. INTRODUCTION 

A. THESIS OBJECTIVES 

The objective of this thesis is to support Navy Anti-Submarine Warfare (ASW) 

training activities in the eastern Pacific by validating and tuning an acoustic model that 

can be used as the basis for estimating sound exposure levels from mid-frequency 

SONAR, and by providing uncertainty estimates for the model output.  The tuned 

acoustic model can be used by the Southern California Marine Mammal Behavioral 

Response Study (SOCAL BRS), and operators of the Sonar Tactical Decision Aid 

(STDA), and the Personal Computer Interactive Multi-Sensor Analysis (PC-IMAT) 

training tool. 

B. THESIS APPROACH AND OUTLINE 

The motivation for this thesis came from a desire to improve ASW training and 

operations.  The region of the Pacific to be modeled was chosen as the western edge of 

the Southern California Anti-Submarine Warfare Range (SOAR) (shown in Figure 1), 

which is part of the Southern California Offshore Range (SCORE).  Specifically, an 

acoustic path over the shallow region of Tanner Bank and a second steep slope path 

extending from Tanner Bank towards a bottom mounted High Frequency Acoustic 

Recording Package (HARP) located at 32.8469 N, -119.1767 W, deployed by Scripps 

Institution of Oceanography.  This location provided for the analysis of the model over 

two distinct topographies, as well as the ability to further tune and validate the model 

after the recovery of data from the HARP and hydrophones located on the seafloor at the 

western edge of SOAR. 

Preliminary model runs were conducted to verify that transmission loss (TL) 

measurements at desired ranges were achievable.  An acoustic source—a Type G-34 

Projector—was used.  The G-34 transmitted mid-frequency signals off the side of the 

R/V Robert Gordon Sproul, while on a research cruise in conjunction with Scripps 

Institute of Oceanography, from 09–12May2011.  Fifteen stations were chosen for 

transmissions using two source depths.  Five mid-range frequencies, 1–5 kHz at 1 kHz 
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intervals, were transmitted at each location, approximately 1.5–2 km apart.  An acoustic 

receiver array was built using three calibrated Acousonde recording devices, commonly 

used as whale tags, and two Seabird temperature/pressure sensors to verify depth.  

Recorded acoustic data were recovered and processed for TL measurements between the 

source and receiver.  Observed TL was then compared with TL estimates calculated from 

the Navy Standard Parabolic Equation (NSPE) model.  Systematic changes were made to 

the geoacoustic model in order to test NSPE’s sensitivity to geoacoustics.  Analysis of the 

observed TL versus modeled TL was done to measure uncertainty, and to arrive at 

recommendations for the best geoacoustic model to be used when modeling acoustic 

propagation in the vicinity of Tanner Bank.      

 

Figure 1.   Southern California Offshore Anti-Submarine Warfare Range (SOAR) near 
San Clemente Island.  Five acoustic paths were chosen emanating from a central 

receiver mooring.  Dots along paths indicate the location of the transmission 
stations. (After Google Earth 2011). 
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II. EXPERIMENT DESIGN AND EXECUTION 

A. ENVIRONMENTAL MODEL 

1. Bathymetry and Sea Surface 

Bathymetry data was added to the NSPE model from the 3 arc-second U.S. 

Coastal Relief Model, which is the same model used by the U.S. Navy’s Digital 

Bathymetric Data Base Variable Resolution (DBDB-V).  Figure 2 shows the bathymetry 

of the region where the experiment was conducted.  The bathymetry data were 

interpolated to points along the modeled paths at the same resolution provided by the 

database.   

 

Figure 2.   Bathymetry near Tanner Bank.  Red, green and yellow lines are the acoustic 
tracks.  Black line is the edge of SOAR.  The dots along the tracks are the 

transmission stations.  (After Google Earth 2011). 
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Scattering losses at the sea surface were accounted for with wind speed data 

collected aboard the R/V Sproul.  The wind speed throughout the evolution was 

moderately strong with a mean value of 8.97 m/s and a standard deviation of 1.82 m/s.  

The NSPE model uses surface wind as a basis to account for surface scattering losses. 
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Figure 3.   Wind speed during transmissions, mean wind of 8.97 m/s. 

2. Sound Speed Profiles 

Sound speed profiles (SSP) were input into the NSPE model using data collected 

from Sippican T4, T6, and T7 Expendable Bathythermographs (XBT).  The U.S. Navy 

Coastal Ocean Model (NCOM) salinity and temperature values were also used as inputs 

into the SSPs.  NCOM for the Southern California region is a 3-km resolution model.  All 

three XBT types have a depth accuracy of ±4.6 meters, a vertical resolution of 0.65 

meters and a temperature accuracy of ±0.1o C.  The T4 and the T6 are rated at 460 meters 

and the T7 is rated at 760 meters (Lockheed Martin Maritime Systems and Sensors 

2005).  The NCOM data were retrieved from the NCOM model run for the nearest date 

and forecast time for each transmission.   

NCOM predicted temperature, depth and salinity were combined using the 

Mackenzie equation (Equation 2.1) for calculating sound speed to create SSPs along the 
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acoustic tracks at 1-km increments. The NCOM SSP was created at depth increments of 

those provided by NCOM, which begins at 2-meter increments increasing with depth to 

100-meter increments at 1000 meters. 
 

  
 

XBTs were launched at each position where the source signal was transmitted 

(Figure 4).  XBTs collected accurate temperature versus depth measurements that were 

then combined with NCOM salinity predictions to create SSPs at the positions shown in 

Figure 5 using the Mackenzie equation.  One T5 XBT that is rated to a depth of 1830 

meters was used at an earlier time of the day to obtain deep-water values.  A CTD was 

planned to have been launched, but was not conducted.  Rough seas throughout the cruise 

had been putting us behind schedule.  Conducting our scheduled transmissions, were 

more important than launching the CTD. 

In the XBT data, a mixed layer was observed to depths ranging from 7–20 meters.  

The maximum depth of the mixed layer for the NCOM data is within 3 meters of the 

XBT SSPs.  The main thermocline existed from the bottom of the mixed layer to depths 

ranging from approximately 40–65 meters.  As seen from Figure 5, it is evident that the 

basic structure of the SSPs for both NCOM and XBT data is the same, with the XBT 

showing a stronger gradient.  This is evidence of a cooler water mass in the 50–100 meter 

depths than forecast by NCOM.  Seven acoustic model runs were performed, using both 

XBT and NCOM SSPs with various geoacoustic parameters.  The parameters were set to 

the extreme ends of the geoacoustic input envelopes (to be discussed later), with little 

difference noted in the TL output.  It is expected that SSPs created from NCOM would 

provide sufficient realism when little data are available; however, only XBT SSPs were 

used for model tuning, since these are expected to show a truer representation of the 
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environment.  Given the strong downward refracting environment, only short direct paths 

existed.  This speaks to the need for the geoacoustic tuning in shallow environment areas 

where significant bottom interaction is expected. 

a)      b) 

 
Figure 4.   XBT locations.  The left figure shows a wide view.  Contours are every 200 

m.  The right figure is a closer view with contours every 100 m in depth.  
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Figure 5.   XBT and NCOM SSPs.  The basic structure of the profiles is the same 

between the XBT and NCOM plots.  The weaker gradient in the NCOM plots did 
not cause significant differences in model output.  
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B. ACOUSTIC PATHS 

The primary acoustic paths analyzed in this study were: 1) the southern path along 

the edge of Tanner Bank (Figure 2, yellow, and, 2) the western path from the Acousonde 

mooring in the direction of the HARP (Figure 2, red).  TL along the three paths in the 

middle (Figure 2, green), were modeled in an effort to maximize data collection  at other 

receivers of opportunity for later analysis. 

The acoustic path along Tanner Bank went from 32.725o N, -119.130o W to the 

Acousonde mooring and was labeled the yellow path.  The depth of this path was 128 

meters at the mooring with a gentle upslope to 90 meters at 7.4 km southeast of the 

mooring.  The bathymetry along this path and source locations are shown in Figure 6a.  

This path was chosen to model a shallow region as it presents an environment with high 

bottom interaction.  

The acoustic path from the Acousonde mooring to the HARP was labeled as the 

red path.  This path is on the slope of Tanner bank, beginning with a depth of 

approximately 128 meters extending downward to a depth of approximately 995 meters 

at 8.5 km from the mooring.  The bathymetry of this path as well as the source locations 

used can be seen in Figure 6b.  This path was chosen for its steep slope environment. 

The three paths labeled in green were decided upon with the anticipation of 

recovering and analyzing data from the HARP and bottom mounted range hydrophones at 

the western edge of SOAR.  Each of these three tracks has only one transmission location 

at ranges of approximately 8.5–5.3 km as depicted in Figure 2. Data from these paths 

were included in the analysis of the red paths as they have similar steep slope acoustic 

environments. 
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Figure 6.   (a) Bathymetry along the shallow path on Tanner Bank, (b) Bathymetry along 

the steep-slope path on the northeast slope of Tanner Bank.  Source locations are 
in black, SSP locations are in red and bathymetry is in blue.  Acousonde receivers 

are at 30, 60, and 90 meters deep at range = 0. 

C. ACOUSTIC SOURCE AND RECEIVER 

The sound source, a Type G-34 Projector, was chosen for its ability to transmit in 

the mid-frequency band, typical of Navy active SONAR.  The projector has a frequency 

range of 200–5,000 Hz with a maximum operational depth of 1379 meters.  It can be 

driven at up to 1,000 Volts (Naval Undersea Warfare Center 2011).  The source was 

calibrated by the Naval Undersea Warfare Center (NUWC).  
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Figure 7.   Type G-34 Projector. 

Calibrated CW tonals from 1–5 kHz were generated and broadcast at depths of 6 

and 50 meters.  For the purpose of measuring source level (SL), a calibrated acoustic 

recorder, the Bioacoustic Probe, was placed 1.8 meters above the source for the duration 

of the experiment.  Its pressure field was processed at 1, 2, and 3 kHz, frequencies.  SLs 

for the 4 and 5 kHz signals could not be accurately measured by the Bioacoustic Probe 

due to the instrument’s sampling rate (fs≈10,000Hz).  To calculate the SL at the 4 and 5 

kHz frequencies, near field data from the receiver mooring was used in conjunction with 

the Bioacoustic Probe calculations.  All frequencies and SLs are in Table 1.  
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Frequency 

(kHz) 

Source Level 

(dB) 

1 149.9 

2 162.9 

3 173.4 

4 173.4 

5 173.4 

Table 1.   Frequencies and source levels from the G-34. 

As a calibrated reference transducer, G-34 SLs can be calculated using a provided 

Transmitting Voltage Response (TVR) curve with measured input voltages.  Aboard the 

R/V Sproul, the winch wire has a central conducting wire used to connect the amplifier to 

the source.  This allowed the source to be independently lowered to any depth.   The 

coiling of a 5,000 meter wire created a frequency dependent inductive effect on the 

voltage seen by the G-34.  Due to our inability to measure the true voltage at the source 

we were unable to apply the TVR curve for source level measurement.   

The source was lowered to depths at which typical hull mounted active SONAR 

might be located, specifically 6 meters.  A 50-meter source depth was chosen to obtain 

measurements from below the surface layer.  Source locations were predetermined to be 

at 1.5–2 km intervals (Figure 10); variability is due to ship drift during the transmission.  

During each transmission, the source was lowered over the side of the vessel as the vessel 

attempted to maintain station in rough seas.  Tones at frequencies 1, 2, 3, 4, and 5 kHz 

were transmitted.  Each continuous wave (CW) frequency was broadcast for 55 seconds 

with a 1-second linear frequency modulation (LFM) sweep in between to use as markers.  

Twenty one seconds of 1-second LFM sweeps were also broadcast to aid in identifying 

the beginning of each transmission period. 

The receiver mooring was designed using Acousonde recorders. The Acousonde, 

developed by Dr. William Burgess of Greeneridge Sciences Inc. is a 22.1 cm long, 9.2 
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ounce autonomous recorder capable of a maximum operating depth of 3000 meters and a 

maximum continuous sampling rate of 232 kHz. The three Acousondes used in this 

experiment were set to a sampling rate of 29,038 Hz, with an anti-aliasing cutoff 

frequency of 9,292 Hz.  They were positioned on a mooring to be at water depths of 30 

m, 60 m, and 90 m (Figure 9).  The predecessor to the Acousonde, a Bioacoustic Probe, 

was positioned 1.8 meters above the G-34 source to aid in establishing SLs (Greeneridge 

Sciences 2011).  

 

Figure 8.   Acousonde Receiver.  Actual size measures 22.1 cm long, and 3.2 cm in 
diameter. 

The Acousonde mooring was deployed at a 128 meter water depth.  The depths of 

the Acousondes were verified by two Seabird SBE 39 Temperature/Pressure Sensors.  

The sensors were moored at 45 and 75 meters, respectively, and the final depth of the 

Acousondes was determined by reference to the actual depth of the pressure sensors 

(Figure 9).  After recovery and conversion from pressure to depth using Saunders’ 

method, it was determined that each Acousonde was only 0.5 m shallower than planned.  

The Saunder’s pressure to depth conversion is: 

 

The position of the mooring was verified by acoustic ranging to determine the location of 

the anchor.   
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Figure 9.   Mooring diagram. Designed and built by Marla Stone of NPS.  Acousonde 
receivers are positioned at 30, 60, and 90 meters.  Two SBE 39 pressure sensors 

are positioned at 45, and 75 meters. 

a)      b) 

 

Figure 10.   Source locations.  Figure (a) has 100 meters contours.  Figure (b) has 200 
meters contours.  15 source locations are at 6 meters deep.  8 source locations are 
at 50 meters in order to have broadcasts below the mixed layer.  The Acousonde 

mooring is at 32.76 N, -119.22 W. 
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D. NAVY STANDARD PARABOLIC EQUATION TRANSMISSION LOSS 

MODEL  

The Navy Standard Parabolic Equation (NSPE) model consists of two methods of 

solving the acoustic parabolic wave equation.  The first method is the Split-step Fourier 

PE (SSFPE) and the second is the newer Split-Step Padé PE (SSPPE), also known as the 

Range-dependent Acoustic Model (RAM), developed by Michael Collins of the Navy 

Research Laboratory.  RAM is an improved version of a finite element split-step model 

and ―has been shown to produce significantly more accurate results than SSFPE‖ in 

environments with significant bottom interaction such as the case with Tanner Bank 

(Naval Oceanographic Office 2009).   

RAM is valid for problems with high angle propagation and large depth variation.  

It was developed to be as accurate as higher order PE solutions, yet two-orders of 

magnitude faster than finite difference solutions (Collins 1992).  Padé approximations 

account for both asymptotic and numerical accuracy, which is how a greater efficiency is 

achieved.  When used on a computer with multiple processors, ―each processor performs 

the equivalent of a single step in the finite difference PE algorithm for the wide–angle 

PE‖ (Collins, 1994). The output of each processor is then combined in a single solution. 

The user provides NSPE with an input file containing relevant environmental 

parameters.  These parameters consist of source depth, frequency, and receiver depth. 

Environmental data such as wind speed, to account for scattering losses at the surface, 

and sound speed profiles are also input, as well as bathymetry, and geoacoustic 

information.  The geoacoustic model includes thickness of sediment layers, bottom 

density, compressional sound speed and attenuation, shear sound speed and attenuation, 

and information about secondary layers.  The model allows these factors to be changed 

based on range and depth.  TL as a function of range is derived from the complex 

pressure field calculated by the model (Naval Oceanographic Office 2009) 

E. GEOACOUSTIC INVERSION 

A geoacoustic inversion is any method by which the properties of the sea floor are 

accurately estimated by establishing a geoacoustic model based on measurements and 
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validating that model with acoustic measurements (Larsen 2006).  Hamilton’s definition 

of the geoacoustic model is that ―of the real sea floor with emphasis on measured, 

extrapolated, and predicted values of those properties important in underwater acoustics 

and those aspects of geophysics involving sound transmission‖ (1980). 

Due to the nature of the ―invariably insufficient‖ data available on the sea floor, 

the geoacoustic modeler must make predictions ―based on extrapolations from similar 

areas and sediment types‖ (Hamilton 1980).  After developing a geoacoustic model, its 

final interpretation should be based off of the ―benefit of knowledge of … measured 

transmission loss data‖ (Bucca 1994).   

F. GEOACOUSTICS 

The geoacoustic models input to NSPE were based on the research of J. E.  

Holzman, ―Submarine Geology of Cortes and Tanner Banks‖ (1992), R. T. Bachman, ―A 

Three-Dimensional Geoacoustic Model for the Catalina Basin‖ (1994), and Paul J. Bucca 

with James K. Fulford, ―Environmental Variability During the Tanner Bank Phase of the 

Pacific Coast Operation‖, (1995).  The methods of Hamilton (1980) were studied and 

implemented to the extent possible.  The sediment and rock types were defined; thickness 

of the layer was established.  Compressional wave speeds and attenuation factors were 

calculated along with shear wave speeds and attenuation factors.  Finally, values for 

sediment and rock densities were determined.  Each researcher provided different 

information with which to hypothesize the best geoacoustic model for the region. 

Bachman’s study is based on the Catalina Basin, just on the other side of San 

Clemente Island from Tanner Bank and San Nicholas Basin.  Bachman proposed a suite 

of equations to calculate sound speed, density, and sound attenuation based on previous 

work by Hamilton (1985), Hamilton (1976), and Bachman (1985) are valid for the 

Catalina Basin.  The equations determine the values for the properties base on sediment 

grain size and sediment thickness.  He distinguishes between fine sediments as being 

greater than 4.5 φ and coarse sediments as being less than 4.5 φ, where 

φ= –log2(grain size in mm).  Sediment thickness from Bachman’s research was 

hypothesized to be up to 3 meters on the tops of ridges.  Tanner Bank, being similar to a 
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ridge in the Catalina Basin, should have a very shallow sediment thickness.  The 

sediment thickness in the deeper regions on the slope of Tanner Bank is hypothesized to 

be approximately 160 meters deep.  It is based on a two-way travel time measurements of 

0.2 seconds from a similarly deep spot in the Catalina Basin on Figure C-1 of Bachman’s 

paper, and his example calculation with the same two way travel time.  Sediment grain 

size estimations of 5 φ on the slope of Tanner bank and 3 φ on Tanner Bank are based on 

similar locations from Catalina basin chosen from Bachman’s Figure E-1.  The 

underlying bedrock of the Tanner Bank area was hypothesized to be Mio-Pliocene 

sedimentary rock based on the location of the Catalina Basin in relation to San Nicholas 

Basin and rock types identified in Figure 3 of Bachman’s paper.  This gives values for 

compressional wave speed in the rock of 2300 m/s, density of 2.21 g/cm3, and a 

compressional attenuation factor of 0.009 dB/m/kHz.  

In the 1952 paper ―Submarine Geology of Cortes and Tanner Banks,‖ J. Holzman 

reveals information from his study of 66 bottom samples of the region.  According to 

Holzman, the grain size distribution of the sediment in the region is due to ―the material 

available and the subsequent working of the sediments by current activity.‖  On the more 

shallow areas atop the bank, ample food is available for benthonic organisms.  It is the 

decay of dead benthonic organisms that leads to coarse sediment.  Fine sediments in the 

shallows are winnowed by the current onto the slopes.  Grain sizes used to build a 

geoacoustic model were taken from Table III and Plate 5 of the paper.  Mean grain sizes 

of 0.5–0.25 mm on the bank were used corresponding to 0.69–1.38 φ.  On the slope mean 

grain sizes of 0.25–0.125 mm corresponding to 1.38–2.08 φ, respectively.   

The Pacific Coast Operation, a multi-laboratory acoustic field measurement 

program that took place in 1994 with a major phase near the Tanner Bank, made several 

conclusions, which were used in building a geoacoustic model.  According to Bucca and 

Fulford the ―primary determinant for the acoustic response of the seafloor is the depth to 

which the sediments extend and not the sediment type or grain size‖ (1994).  From their 

research they hypothesized the depth of the sediment on Tanner Bank to have a 

maximum thickness of 6 meters and found other data sets that suggest the thickness is 

highly variable and in some places nonexistent.  Most of the acoustic energy 
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encountering the bottom is reflected back into the water column making the influence of 

the grain size nearly irrelevant.  Based on 9 sediment grabs, grain size was determined to 

be commensurate with Holzman’s research.  Bucca and Fulford proposed two 

geoacoustic models for the area.  For fine sand a compressional speed of 1700 m/s, 

compressional attenuation of 0.35 dB/m/kHz and a density of 1.7 g/cm3, all extending to 

6 meters below the ocean bottom.  For mud, a depth dependent compressional speed of 

1470 + 1.33m/s per meter below the bottom, compressional attenuation of 0.06 

dB/m/kHz and a density of 1.5 g/cm3 were proposed.  Below the sediment layer in the 

sandstone a compressional speed of 2500 m/s, a compressional attenuation of 0.03 

dB/m/kHz, and a density of 2.2 g/cm3 were proposed.  

The preceding three studies were used to generate the parameters for the 

geoacoustic model.  The end parameters studied were compressional sound speed in the 

sediment, compressional attenuation in the sediment, thickness of the sediment, density 

of the sediment, compressional sound speed in the underlying rock layer, and 

compressional attenuation in the underlying rock.  Only one value for density in the 

underlying rock layer was found in the literature therefore it was held constant at that 

value for this study.  The input variables were sediment grain size and sediment depth 

since the compressional sound speed and attenuation are based on depth, and density is 

based on grain size as presented in Bachman (1995).  In the cases from Bucca and 

Fulford, where the values for compressional sound speed, attenuation, and density were 

given, those values were input directly. 

The ranges and increments of grain size and sediment thickness used to vary the 

geoacoustic model were based on the values presented in the literature.  Each parameter 

was studied by varying the one in question, while holding the others constant.  Having up 

to 8 increments for each parameter and 345 sound transmissions to compare, nearly 

15,000 model runs were completed.  More than 95,000 calculations of modeled TL were 

available for statistical comparison with observed values to determine efficient 

geoacoustic model.   

For the grain size parameter, on Tanner Bank, it was varied from 0.69–3.462 φ at 

an increment of 0.462 φ.  On the slope, the grain size was varied from 1.38–5.724 φ at an 
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increment of 0.724 φ.  The grain size parameters were based on Bachman and Holzman’s 

work.  For the cases where grain size was not analyzed, values for compressional sound 

speed and attenuation, shear sound speed and attenuation, and density from Bucca and 

Fulford were used in the model. It is important to note that for the Bucca and Fulford 

geoacoustic model there are no parameters that have thickness dependence.   

For sediment thickness on Tanner Bank, the parameter was varied from 0–6 

meters at an increment of 1-meter.  For the slope, the sediment thickness parameter was 

varied from 75–225 meters at an increment of 25 meters. 

For the underlying rock layer, a density of 2.21 g/cm3 was used.  Based on a 

compressional sound speed ranging from 2300–2500 m/s, which was incremented at 30 

m/s, a compressional attenuation of 0.0207–0.0225 dB/m/kHz was input using 

Bachman’s equation. 
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III. ANALYSIS 

A. ACOUSTIC SIGNAL PROCESSING AND VARIABILITY 

A total of 115 CW acoustic transmissions were broadcast and collected on three 

Acousonde receivers.  Each broadcast was a 55-second CW signal at each of five 

frequencies.  Signals were identified within the receive data by analyzing spectrograms of 

relevant time periods.  To ensure only CW transmitted signal was processed, the middle 

50 seconds were used for analysis.  Each transmission was filtered using a 4th order 

Butterworth filter with a 10 Hz band around the center frequency.  TL values were 

calculated from the differences of the SL and the RL of the broadcast.  RLs were based 

on root mean square (RMS) pressure for 50 seconds.  A spectrogram of a typical 

broadcast sequence is shown in Figure 11. 

 

Figure 11.   Spectrogram for one 5 minute transmission sequence.  This transmission was 
from the final transmission made in the experiment.  It is from a 250 meter range, 

6 meter source depth, and 30 meter receiver depth.  Dark red vertical lines 
indicate the 1-sec LFM sweeps. 

To investigate variability and uncertainty in the observed TL measurements, each 

transmission was also analyzed as fifty, 1-second segments with a TL calculated for each 

segment.  These fifty TL values fluctuated with time as can be seen in Figure 12, which is 

indicative of the variability that occurred within a 50 second segment.  The mean period 
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of the fluctuations was calculated to be 5 seconds, which may be accounted for by the 

continuous change in water depth of approximately 2-m due to swell height.  This 

phenomenon is described in ―Observations of Fluctuation of Transmitted Sound in 

Shallow Water‖ (Urick 1969).  Mean wave periods from the San Clemente Island Buoy 

and the San Nicolas Island Buoy, were 5.61 and 5.96 seconds, at 82 and 113 km from the 

receiver, respectively.  Figure 13 shows the location of buoys from which data was used. 

 

Figure 12.   TL variability.  Red dots are calculated values for TL at 1 second intervals, 
and the blue is the trend line.  This transmission was 200 meters from the 

mooring, at 6 meters deep and 2000 Hz.  The Acousonde it was received on 30 
meters deep.  The TL for the entire 50 second period was 47dB. 
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Figure 13.   Top Left – San Nicholas Island Buoy, Bottom Right – San Clemente Island 
Buoy, Bottom Left – Tanner Basin Buoy (not reporting wave data), (After Google 

Earth 2011). 

A standard deviation for transmission loss was calculated from the standard 

deviation of the RMS pressure for each 50 second transmission.  Due to TL being on a 

log scale, the standard deviation below the mean is less than the standard deviation above 

the mean after conversion to dB from pressure.  Since the received pressure changes with 

range and depth, a standard deviation was calculated for each of the 345, fifty second 

transmissions.  Greater than 93% of the standard deviations were found to be within 4 dB 

below the mean TL, and greater than 81% were found to be within 6 dB above the mean 

TL.  Histograms of the standard deviations from mean transmission loss for each of the 

345 collected transmissions are shown in Figure 14. 

 

Figure 14.   a) Standard Deviation above TL.  81% of the 345 received signals had an 
upper bound for standard deviation of 6dB. b) Standard Deviation below TL.  

93% of the 345 received signals had a lower bound for standard deviation of 3dB. 
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B.   TUNING THE NSPE MODEL 

The NSPE model was run by applying the principle of reciprocity, which states, 

―if the location of a small source and small receiver are interchanged in an unchanging 

environment, the received signal will remain the same‖ (Kinsler 2000).  The resulting TL 

for each run was then compared with observed TL compiled across all frequencies.  

Observed versus modeled TL was statistically analyzed to compare 280 different 

geoacoustic models to determine the best fit geoacoustic model for the shallow region 

and the best fit geoacoustic model for the deeper, sloping region.  The statistics used 

were: root mean square error (RMSE) for observed versus modeled pressure, the slope of 

a first order linear regression fit of observed versus modeled pressure, the percent of 

modeled TL values within one standard deviation of the observed TL.  A t-test was also 

done to determine if the model is biased to be greater than or less than observed TL, and 

by how much.  Lastly, a new metric of TL difference, presented by J. Fabre (2009), was 

also applied and is presented in Equation 3.1. 

 
where the weighting factor is  w = 1 if TLo≤60 dB, w = (110-TLo)/50 if TLo is between 

60 and 110 dB, and w = 0 if TLo is >110 dB.  

1. Sediment Layer Variability for Tanner Bank 

In the sediment layer, the independent variables were sediment thickness and 

grain size.  The increments for the sediment thickness were 0–6 meters, (based on 

Bachman, Bucca, and Holzman’s research) at 1-meter increments.  For the sediment 

thickness of zero, a very thin layer is actually applied.  The grain size was varied from 

1.152–3.462 φ, at 0.462-φ increments.  These thickness and grain sizes were used to 

calculate density, compressional sound speed and attenuation, and shear speed and 

attenuation based on Bachman’s equations.  Separate runs were made for the geoacoustic 
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models presented by Bucca and Fulford (1995), Table 2, and were compared with the 

Bachman based results.  A summary of the statistical results for the shallow leg are in 

Table 3.    

Sediment 

Type 

Compressional 

Speed (m/s) 

Compressional 

Attenuation 

(dB/m/kHz) 

Shear 

Speed 

(m/s) 

Shear 

Attenuation 

(dB/m/kHz) 

Density 

(g/cm3) 

Fine Sand 1700 0.35 420 8.0 1.7 

Mud 1470+1.14z 0.06 50 8.0 1.5 

Table 2.   Values used for the geoacoustic model presented by Bucca and Fulford 
(1995).  The variable z is the depth below the sea floor in meters. 

The RMSE values for pressure across most of the geoacoustic models yielded 

results between 0.605–0.645 μPa.  The condition yielding the worst RMSE value for 

pressure was Bucca’s geoacoustic model for a mud bottom.  The best condition yielding 

the lowest RMSE result is Bucca’s fine sand model.  In terms of grain size, RMSE 

decreased as φ decreases.  There were little to no changes across the thickness variables 

in the RMSE statistic, with the exception of having no sediment (very thin layer), results 

are slightly worse.   

The slope of the first order linear regression best fit also improved with coarser 

grain sizes.  Across grain sizes, thickness did not affect the slope of the regression line; 

however, using a thickness of zero yielded regression slopes consistent with other values.  

Bucca’s mud model performed the worst and his sand model had regression slopes near 

those of the mid-range tested grain sizes.   

The most telling statistic was the number of values within one standard deviation 

observed TL.  Bucca’s mud model performed worst with only around 25% of modeled 

TL being within one standard deviation of observed TL.  Bucca’s sand model performed 

acceptable with 43% of modeled values within one standard deviation of the observed 

TL.  The statistic improved with the coarser the grain size, to 54% of modeled values 

within one standard deviation with the coarsest grain size of 1.152 φ.  A thickness of 4 
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meters had the best results, but was only an improvement over other thickness by 1.0 %, 

however, with no sediment thickness (very thin layer), results went down 6.0%. 

To determine bias, a left handed t-test was used.  Positive results showing that at a 

95% confidence level the average observed prms was greater than the average modeled 

prms.  Further investigation to find the model with the least negative bias was done.  By 

incrementally increasing the mean, which the t-test was performed on, the coarsest grain 

size of 1.152 φ was found to have the smallest mean pressure difference, observed minus 

modeled, of 0.03 μPa, on a 95% confidence interval.  

Using the TLdifference metric (Fabre 2009) a similar story was told.  For the 

thickness variable, using a sediment thickness of zero meters produced results on the 

order of 0.7 dB higher than using a thickness of 1 meter.  The sediment thickness of 4 

meters produced the best results across all grain sizes.  The coarsest grain size produced 

the best results, and at sediment thickness of 4 meters was 6.16 dB, being within one 

standard deviation of our upper bound. 

Following a review of all of the analyzed statistics it is apparent that using a 

geoacoustic model following the methods of Bachman, but using the grain sizes provided 

by Holzman produce modeled TL results closest to those actually observed on range.  

The statistics for TLdifference and percent of values within one standard deviation have 

better results when the sediment thickness is 4 meters.  Table 3 presents a summary of the 

statistics calculated for the various geoacoustic models, all using a thickness of 4 meters.  

From Table 3 and Figures 16–18 it can be seen that there is a trend towards better 

modeled results when using a coarser grain size.  Figure 15 is a sample plot of the full 

field transmission loss, illustrating the interactions with the bottom in this shallow region.  

This demonstrates the importance for using a geoacoustic model that will result in values 

closest to observed TL values. 
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1.152 φ 54.1 6.160 0.6056 0.6866 0.03 

1.617 φ 51.9 6.217 0.6064 0.6834 0.035  

2.076 φ 50.4 6.304 0.6079 0.6766 0.04  

2.538 φ 48.9 6.462 0.6084 0.6725 0.045  

3.000 φ 47.4 6.740 0.6101 0.6670 0.05  

3.462 φ 42.2 7.382 0.6167 0.6604 0.06  

Bucca Sand 43.0 7.399 0.6030 0.6723 0.058 

Bucca Mud 24.4 10.838 0.6312 0.6625 0.10  

 

% of modeled 
values within 
one standard 

deviation 

TLdifference (dB)  

(Fabre 2009) 
RMSEpressure 

(μPa) 

Slope of 1st 
order linear 
regression 

Mean 
difference 
between 

observed and 
modeled 

pressure with 
95% 

confidence 
(μPa) 

Table 3.   Statistical results for the shallow leg geoacoustic models.  All results shown 
are for a thickness of 4 meters, which provided the best results when 
comparing thickness.  The trend of better results by using smaller φ values 
is apparent. 
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Figure 15.   Full field TL plot of the shallow region of Tanner Bank.  The heavy black line 

is the sea floor.  The illustration shows the extent of sound penetration into the 
sediment layer.  Source locations are black circles at 6 meter and 50 meter depths.  

The Acousonde receiver mooring is at the range of 0 km on the left side of the 
figure. 
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Figure 16.   While all of the models have the same trends, minus the mud model with a 

few deviations, the geoacoustic model with the coarsest grain size yields results 
closest to observed TL. 
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Figure 17.   With similar results to the receiver at the 30 meter depth, the receiver at the 60 

m depth shows that the best results of modeled TL come from the geoacoustic 
model using Bachman’s equations with the coarsest grain size.  
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Figure 18.   On the bottom receiver, at a depth of 90 meters, the coarsest grain size of 

1.152 φ almost comes within one standard deviation a every sampled range. 
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2. Sediment Layer Variability for the Slope of Tanner Bank 

In the sediment layer on the slope, the independent variables were also sediment 

depth and grain size.  The increments for the sediment depths were 75–225 meters at 25-

meter increments.  The grain size was varied from 2.104–5.724 φ at 0.724 φ increments.  

These thickness and grain sizes were used to calculate density, compressional sound 

speed and attenuation, and shear speed and attenuation based on Bachman’s equations.  

Separate runs were made for the geoacoustic models presented by Bucca and Fulford 

(1995) in Table 2, and were compared with the Bachman based results.  A summary of 

the statistical results for the sloping leg are in Table 4. 

The range for RMSE on the slope across the geoacoustic models yielded results 

between 0.261–0.279 μPa.  The RMSE values for pressure showed two trends.  RMSE 

decreased with coarser grain sizes and also decreased with decreasing sediment thickness.  

The condition yielding the worst RMSE value for pressure was Bucca’s geoacoustic 

model for a mud bottom, which showed no changes with changing sediment thickness.  

Sediment thickness of 75 meters produced the lowest results for RMSE for all grain sizes 

and for Bucca’s models.  RMSE improved with coarser grain sizes; the grain size of 

2.104 φ having the lowest RMSE. 

The slope of the first order linear regression best fit also improved with coarser 

grain sizes.  The best result was with the coarsest grain size at a sediment thickness of 75 

meters.  The 75 meter thickness produced first order linear regression slope closest to 1; 

as thickness changed from 100 meters to 225 meters there was little or no change for the 

first order linear regression slope.  Bucca’s mud model performed as well as coarse 

grains, and Bucca’s fine sand model performed as well as the models using mid-sized 

grains.   

The sediment thickness of 75 meters performed the best for the percent of 

modeled values within one standard deviation of observed TL.  The trend for the best 

grain size leans toward the center as 4.276 φ, with a thickness of 75 meters, has 44.8 % of 

modeled values within one standard deviation of observed values.  Bucca’s mud model 

performed worst with around 25% of modeled TL being within one standard deviation of 
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observed TL.  On the sloping section, Bucca’s sand model performed well overall, with 

43.8% of modeled values within one standard deviation. 

To determine bias, a left-handed t-test was used.  Positive results showing that at a 

95% confidence level the average observed prms was greater than the average modeled 

prms.  Further investigation to find the model with the least negative bias was done.  By 

incrementally increasing the mean, which the t-test was performed on, the coarsest grain 

size of 2.104 φ was found to have the smallest mean pressure difference, observed minus 

modeled, of 0.018 μPa, on a 95% confidence interval at the 100 meter thickness.  

Using the TLdifference showed results of coarse grain sizes yielding the smallest 

differences.  The best results from this metric came from the grain size of 2.828 φ, with a 

TLdifference of 6.5338 dB.  Slightly better results came from a thickness of 75 meters across 

all grain sizes.  Bucca’s mud model performed horribly, where his fine sand model 

performed as well as the mid-grain models tested.    

Following a review of all of the analyzed statistics for the sloping leg it is 

apparent that using a geoacoustic model following the methods of Bachman, but using 

the grain sizes provided by Holzman produce modeled TL results closest to those actually 

observed on range.  All of the statistics, with the exception of the t-test performed best at 

a thickness of 75 meters.  The t-test performed best at 125 meters.  The results presented 

in Table 4 are for a sediment thickness of 75 meters.  From Table 4 and Figures 20–22 it 

can be seen that there is a trend towards better modeled results when using a coarser grain 

size.  Figure 19 is a sample plot of the full field transmission loss, illustrating the 

interactions with the bottom in this sloping region.  Due to fewer bottom interactions a 

complicated formula for geoacoustics is not as critical, which is why Bucca’s model for 

the fine sand bottom performs acceptably well for a model with reduced complexity.  
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2.104 φ 43.3 6.6603 0.2613 0.7582 0.018 

2.828 φ 43.8 6.5338 0.2627 0.7507 0.03  

3.552 φ 43.8 6.6099 0.2701 0.7424 0.035  

4.276 φ 44.8 6.6462 0.2729 0.7387 0.0365  

5.000 φ 42.4 6.6977 0.2674 0.7443 0.035 

5.724 φ 43.3 6.8154 0.2684 0.7444 0.0363 

Bucca Sand 42.4 7.0248 0.2699 0.7435 0.0367 

Bucca Mud 21.0 14.8128 0.2784 0.7518 0.085 

 

% of modeled 
values within 
one standard 

deviation 

TLdifference (dB)  

(Fabre 2009) 
RMSEpressure 

(μPa) 

Slope of 1st 
order linear 
regression 

Mean 
difference 
between 

observed and 
modeled 

pressure with 
95% 

confidence 
(μPa) 

Table 4.   Statistical results for the sloping leg.  All results shown are for a sediment 
thickness of 75 meters, which provided the best results when comparing 
statistics across thickness values holding grain size constant.  The more 
coarse grain sizes provide the best statistics, although there is not one-grain 
size that dominates across all statistics.  
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Figure 19.   Full field TL plot of the sloping region of Tanner Bank.  The heavy black line 

is the sea floor.  The illustration shows that with fewer bottom interactions than 
on Tanner Bank itself, there is a lesser extent of sound penetration into the 

sediment layer.  Source locations are black circles at 6 meter and 50 meter depths.  
The Acousonde receiver mooring is at the range of 0 km on the left side of the 

figure. 
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Figure 20.   The top receiver, 30 meters deep, along the slope, shows little difference 

between geoacoustic models, with the exception of the mud bottom, which gets 
worse with increased range.  
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Figure 21.   The coarse grain size of 2.828 φ, and Bucca’s fine sand model are consistent 

with each other and statistically produce results of modeled TL closest to 
observed TL. 
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Figure 22.   This illustration of the modeled TL to the bottom receiver at 90 meters deep, 

along the slope, shows why the fine grain size, 5.724 φ, model does not 
statistically perform well.  For the 5.724 φ curve, a large fluctuation occurs at 1.5 

km, with smaller yet noticeable deviations at 4.5, and 5.5 km. 
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3. Rock Layer Variability 

The compressional sound speed in the underlying rock was varied from 2300–

2500 m/s with a constant compressional attenuation factor of 0.009 dB/m/kHz.  Between 

Bucca’s and Bachman’s models, there is little difference in shear sound speed, therefore 

it was held constant at 885 m/s for models with varied grain sizes.  The shear attenuation 

factor was held at 3.4 dB/m/kHz, for all models with grain sizes.  A constant density of 

2.21 g/cm3
 was used for all models.  Across all statistics analyzed there were no trends or 

significant differences for any values of compressional sound speed.  A conclusion can be 

drawn that with any compressional sound speed used from 2300–2500 m/s the NSPE 

model will not yield significantly different values for TL in the region of Tanner Bank.  

The inputs for the deeper sloping section of Tanner Bank were the same with regards to 

the compressional sound speed, attenuation, and density of the underlying rock layer. 
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IV. CONCLUSIONS 

The objective of this thesis was to find a geoacoustic model to use in SCORE near 

Tanner Bank.  The results are conclusive that a geoacoustic bottom developed using 

Bachman’s equations with coarse grain sizes yield modeled TL values closest to observed 

TL values.  The best geoacoustic model has greater than 50 percent of its modeled values 

within one standard deviation of observed values, based solely on the time dependence of 

source level.  When viewing the TL versus range plots, (Figures 16–18 and 20–22) it can 

be seen that there are several instances where modeled TL would be even closer to 

observed TL if a range factor were considered in the standard deviation.  There are other 

factors contributing to differences between modeled and observed values, which were not 

tested in this thesis, such as a range or time dependent wind speed, better bathymetry, or 

range dependent geoacoustics. 

For the shallow leg, directly over Tanner Bank, it is concluded that a geoacoustic 

model of the sediment layer be constructed using Bachman’s equations and a sediment 

grain size on the order of 1.15 φ (0.45 mm).  Even more coarse grain sizes should be 

chosen with decreasing ocean depth as proposed by Holzman.  While the sediment 

thickness may be nonexistent in areas, and of varying thickness in others, using a 

thickness of 4 meters for a geoacoustic model in the shallow regions (near 100 meters 

deep) of SCORE produce the modeled TL values closest to those observed.  Even though 

Bucca and Bachmann present different geoacoustic models for the underlying rock layer 

in SCORE, these two models for the rock layer produced results, which were statistically 

insignificant. 

For the sloping leg, from 100–1000 meters deep, it is concluded that a 

geoacoustic model be constructed using a sediment thickness of 75 meters.  Applying 

Bachman’s equations, a grain size on the order of 2.10 φ (0.23 mm) should be used in 

order to give modeled transmission loss values closest to those observed.  If a less 

complex geoacoustic model is desired, the fine sand model presented by Bucca should be 

used, expecting only slightly less accurate results.  These recommendations are made 
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based on the fact that three of the five statistics analyzed had better results with the 

coarsest grain size and the other two statistics were still producing more favorable results 

using coarser grain sizes. 
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IV. FUTURE RESEARCH 

A. ANALYSIS OF OTHER DATA SETS 

During the cruise aboard R/V Sproul, a HARP was deployed at the northern end 

of the sloping leg acoustic profile.  This data can be used to confirm and refine the 

conclusions presented in this thesis as to the structure of the geoacoustics for the area.  

Data from the HARP will be available after recovery, expected in November 2011.  Data 

from the transmissions presented in this thesis were also collected on several 

hydrophones at the western edge of SOAR, operated by the U.S. Navy.  This data is 

currently being converted to usable formats for analysis. 

B. ANALYSIS OF OTHER AREAS 

This experiment also should to be replicated in other areas of SCORE.  Deeper 

tracks should be covered where the bathymetry is consistently 1000 meters or greater.  

Observed transmission loss studies of SCORE should be done with changing bathymetry 

(deep to shallow, then back to deep).  Models of a changing bathymetry then should be 

created with range dependent geoacoustics.  Results from these future experiments should 

then be compared to the results in this thesis to decide if geoacoustics in and near SCORE 

can should be generalized to achieve good results, or, should geoacoustics in and near 

SCORE be made as specific and range dependent as possible to achieve the best results 

possible.  Similar research should also be conducted in other Navy ranges such as the 

proposed Under Sea Warfare Training Range (USTWR), off the coast of Jacksonville, 

Florida. 
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